Practical Stability of Caputo Fractional Differential Equations by Lyapunov Functions

نویسندگان

  • RAVI AGARWAL
  • S. HRISTOVA
  • D. O’REGAN
چکیده

The practical stability of a nonlinear nonautonomous Caputo fractional differential equation is studied using Lyapunov like functions. The novelty of this paper is based on the new definition of the derivative of a Lyapunov like function along the given fractional differential equation. Comparison results using this definition for scalar fractional differential equations are presented. Several sufficient conditions for practical stability, practical quasi stability, strongly practical stability of the zero solution and the corresponding uniform types of practical stability are established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Solutions to Impulsive Caputo Fractional Differential Equations

Stability of the solutions to a nonlinear impulsive Caputo fractional differential equation is studied using Lyapunov like functions. The derivative of piecewise continuous Lyapunov functions among the nonlinear impulsive Caputo differential equation of fractional order is defined. This definition is a natural generalization of the Caputo fractional Dini derivative of a function. Several suffic...

متن کامل

Hybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method

In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.

متن کامل

Study on stability analysis of distributed order fractional differential equations with a new approach

The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...

متن کامل

Stability analysis of impulsive fuzzy differential equations with finite delayed state

In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...

متن کامل

The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order

Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016